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DEFLECTION OF CONCRETE MEMEBRS WITH ALLOWANCE 

FOR FLEXURAL CRACKING 
 
 
This Technical Note describes the background to calculation of instantaneous deflection of concrete 
members with due allowance to flexural cracking.  The work is based on the relationships recommended 
in ACI-318 [ACI-318, 2008]. In a companion Technical Note (TN294), the relationships developed and 
explained herein are used in a detailed numerical example.  
 
 
 
1 DEFLECTIONS 
 

1.1 Overview 

In many instances, concrete members crack under service load. Cracking reduces the flexural 
stiffness of a member.  As a result, for the same loading, a cracked concrete member deflects 
more than if its sections were uncracked. A  common practice is to determine the loss of 
stiffness in a member due to cracking and base the deflection calculation on a “reduced 
moment of inertia Ie”   when the applied moment at a section exceeds the cracking capacity 
of the section. 

1.2 Equivalent Moment of Inertia 

The post-cracking reduced moment of inertia is represented through an Equivalent Moment 
of Inertia, Ie. The variation of the equivalent moment of inertia for a simply supported beam, 
in which the applied moment exceeds the cracking moment of the section, is shown in the 
schematic of Fig. 1-1. The equivalent moment of inertia is given by [ACI-318, 2008]: 

Ie = (Mcr / Ma)
3
 Ig + [1-(Mcr / Ma)

3
]Icr ≤ Ig (1.2-1) 

Where, 

Icr = Moment of inertia of cracked section; 
Ie = Effective moment of inertia; 
Ma = Maximum moment in member at stage deflection is computed; and, 
Mcr = Cracking moment. 

The applied moment, Ma, is calculated using elastic theory and the gross moment of inertia 
for the uncracked section – gross moment of inertia, Ig. The change in distribution of 
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moment in indeterminate structures as a result of cracking in concrete is assumed to be 
generally small, and already accounted for in the empirical formula (1.2-1) for equivalent 
moment of inertia. 

Mcr = frIg /yt (1.2-2) 

Where, 

fr  =  Modulus of rupture, flexural stress causing cracking. It is given by: 
 

fr = 7.5 f’c
1/2   (1.2-3) 

 
yt = distance of section centroid to farthest tension fiber 

 

 

FIGURE 1.1-1 

 
For all-lightweight concrete, fr is modified as follows: 
 
fr = 0.75 * 7.5 f’c

1/2  (1.2-3a) 



                                                                                               Technical Note 
 

 
 

3

Values of Ig are based on the geometry of the concrete cross section, without accounting for 
the amount and location of reinforcement. For the common case of rectangular and flanged 
sections (Fig. 1-2), these values are: 

For rectangular section: 

Ig = bd
3
/12    (1.2-4) 

 
For flanged section: 

Ig = hf
3
(b – bw)/12 + bwh

3
/12 + (1.2-5) 

 hf (b – bw)(h – (hf / 2) – yt)
2
 + bwh(yt – h/2)

2
  

 

 

FIGURE 1-2 

The cracked moment of inertia depends on the strain and force distributions on the cross-
section illustrated in Fig. 1-3 for a rectangular section, where concrete is assumed to take 
no tension. Using the assumption of (i) plane sections remain plane, and the equilibrium 
consideration of  (ii) tensile force on section equals compression, the position of the 
neutral axis, c, can be determined. For the simple case of rectangular section with tensile 
reinforcement only, the procedure is as follows: 

Tension equals compression gives: 
  
 Asfs = bc(fc/2) (1.2-6) 

Where fs and fc are stresses in steel and concrete respectively. 

Since the steel stress fs = Esεs and concrete stress, fc = Ecεc can be rewritten as 
 AsEsεs = (bc/2)Ecεc (1.2-7) 
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FIGURE 1-3 

From similar triangles in Fig. 1-3b, 

 εc/c = εs/(d – c) (1.2-8) 
or 

 εs = εc(d/c – 1) (1.2-9) 

From Eqs. 1.2-7 and 1.2-9, 

 AsEsεc(d/c – 1) = (bc/2)Ecεc         (1.2-10) 

Or 
 AsEs/Ec(d/c –1) = bc/2            (1.2-11) 
 
Replacing the modular ratio Es/Ec by n, Eq. 1.2-11 can be rewritten as 

 (bc2)/2 + nAsc – nAsd = 0 (1.2-12) 

The value of c can be obtained by solving the quadratic equation. 

 C = [(2dB + 1)
1/2

 – 1]/B (1.2-13) 

Where, 

 B = b/(nAs) (1.2-14) 

Other cross-sectional shapes and reinforcement disposition can be treated in a similar 
manner. The outcome for the common case of rectangular and flanged sections with and 
without compression reinforcement is: 

For rectangular section: 

i. Without compression rebar: 

  c = kd = [(2dB+1)1/2 – 1]/B (1.2-13) 
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Where, 

 B = b/(nAs)  (1.2-14) 

ii. With compression rebar: 

  c = kd = {[2dB(1 + rd’/d) + (1.2-15) 

   (1 + r)2]1/2 – (1 + r)}/B 

Where, 

  B = b/(nAs) (1.2-14) 

  r = (n – 1) As’/(nAs) (1.2-16) 

 

For flanged section with compression zone exceeding the flange thickness: 

i. Without compression rebar: 

  c = kd = {[G(2d + hf f) + (1.2-17) 

   (1 + f)2]1/2 – (1 + f)}/G 

Where, 

  f = hf (b – bw)/(nAs) (1.2-18) 

  G = bw/(nAs) (1.2-19) 
 

ii. With compression rebar: 

  c = kd = {[G(2d + hf f + 2rd’) + (1.2-20) 

   (f + r + 1)2]1/2 – 

   (f + r + 1)}/G  

Where, 

  f = hf (b – bw)/(nAs) (1.2-18) 

  G = bw/(nAs) (1.2-19) 

  r = (n – 1) As’/(nAs) (1.2-16) 

Once the position of the neutral axis is determined, the section is transformed as 
illustrated in Fig. 1-4. 

The computed moment of inertia of the sections shown in this figure is: 

For rectangular section: 
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i. Without compression rebar: 

  Icr = (bk3d3)/3 + nAs(d-kd)2 (1.2-21) 

Where, 

  kd is given in Eq. 1.2-13. 

ii. With compression rebar: 

  Icr = bk3d3/3 + nAs(d – kd)2 + (1.2-22) 

  As’(n-1)(kd-d’)2  

Where, 

  kd is given in Eq. 1.2-15. 

For flanged section with compression zone exceeding the flange thickness: 

i. Without compression rebar: 

  Icr = hf3(b – bw)/12 + (bw k3 d3)/3 + (1.2-23) 

 hf (b – bw)(kd – hf/2)2 + 

 nAs(d – kd)2  

Where, 

  kd is given in Eq 1.2-17. 

ii. With compression rebar: 

  Icr = hf3(b – bw)/12 + (bw k3 d3)/3 + (1.2-24) 

 hf (b – bw)(kd – hf/2)2 + 

 nAs(d – kd)2 + As’(n –1)(kd-d’)2  

Where, 

  kd is given in Eq 1.2-20. 
For other sections, a similar procedure is used. 
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FIGURE 1-4 
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